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INTRODUCTION 

Polymer solutions and melts are viscoelastic; they exhibit fluidlike behavior 
in steady shear, but the initial response to an imposed deformation involves 
a material-dependent transient that may be many orders of magnitude 
longer than time scales associated with instrument inertia. Intrinsic 
material time scales can be identified with the dynamics of the macro­
molecular chains. Shaping processes for polymeric materials are usually 
carried out in the liquid state, often over times that are rapid relative to 
those associated with molecular reorganization; the viscoelasticity is thus 
relevant to any understanding of flow and structure development. 

The distinction between the rheology and the fluid mechanics of visco­
elastic materials is vague but is worth stating. The former is concerned 
with constitutive relations between stress and deformation and may involve 
physical modeling at a molecular level. Controllability of the flow field is 
essential when making rheological measurements to evaluate material 
properties, so the kinematics are generally imposed and the momentum 
equation is not solved. Viscoelastic fluid mechanics, on the other hand, is 
the study of motions in which the kinematics cannot be established a priori, 
and the continuity and momentum equations must be solved together with 
the constitutive equation for the stress. The equations that must be solved 
for even the most elementary viscoelastic liquids are considerably more 
complex than the Navier-Stokes equations, and many unresolved issues 
of a fundamental nature remain. Students of viscoelastic fluid mechanics 
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14 DENN 

have therefore focused on the use of constitutive equations that capture 
important qualitative features of material rheology, but that are simplistic 
relative to the formulations believed to characterize real materials. 

This chapter is a personal overview of issues needing resolution before 
viscoelastic fluid mechanics can be used routinely to solve flow problems 
of technological significance. High stress levels in the neighborhood of a 
bounding surface, leading to anomalous behavior (relative to experience 
based on the flow of low-molar-mass Newtonian liquids), is a prevailing 
theme. Numerical simulation is not specifically addressed, but the issues 
discussed here appear to be at the root of problems associated with lack 
of convergence of computational algorithms. 

CONSTITUTIVE EQUATIONS 

The development of appropriate constitutive equations to describe the 
stress state of viscoelastic liquids remains an area of active research (and 
controversy). While there have been major advances in constitutive 
descriptions based on molecular and quasi-molecular arguments (cf. Doi 
& Edwards 1986, Bird ct al. 1987), no theory is yet available that can 
adequately describe all of the observed phenomena in a variety of flows. 
The theories in hand do appear to be adequate to predict most of the 
observed phenomena at least qualitatively, however. Improvements in 
constitutive theories are driven to a large extent by the desire for implemen­
tation in engineering applications. Major conceptual issues that can be 
addressed in fluid-mechanical terms arise in the most elementary descrip­
tions of viscoelastic liquids, and these elementary constitutive equations 
are adequate for the purposes of this review. 

The Oldroyd class of incompressible viscoelastic fluids was first intro­
duced in 1950; the extra-stress t" for the Oldroyd fluid has the following 
form: 

A. l1abct" 
+-r = 2 [D+A 

l1a'b.c.D] 
I1t '1 I1t ' (1) 

where ii, 17, and A are material constants. The derivative l1ab;J/11t of any 
tensor J is written as follows: 

l1abcJ oj 
-- = - +voVJ-(o)"J-Jow) I1t at 

+a(D' J +J' D)+bI trace(D 'J)+cD traceJ, (2a) 

D = Ij2[Vv+(Vv)t], W = lj2[Vv-(Vv)t] (2b) 
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VISCOELASTIC FLUID MECHANICS 15 

This is the most general form of a time derivative that is consistent with 
the principle of material frame indifference. Here 110001 At, which is usually 
denoted �/�t, is the laumann, or corotationai, derivative, and l1_lOo/At, 

usually denoted b/bt, is known as the Oldroyd upper-convected derivative. 

The parameter a is bounded between - 1 and 0 in order to be consistent 
with observed measurements of normal stresses in steady shear. The pa­
rameters b, b', and c are usually taken as equal to zero in applications; 
c' may always be taken as zero, since trace D = 0.· 

The Oldroyd equation with a = a' = -1, b = b' = c = c' = 0, is deriv­
able from a theory of dilute polymer solutions in which the chain statistics 
are Gaussian. The Gaussian assumption cannot account for the finite 
extensibility of polymer chains and allows the chains to be stretched to 
infinite length in a strong flow field, leading to predictions of infinite 
stresses at finite rates; the theory is thus unlikely to be appropriate at very 
high stress levels. In this theory, A is a time constant characteristic of chain 
relaxation, and 1'/ is the viscosity of the solution; the "retardation time" A 
is related to the other physical parameters through the equation A = A1'/sll1, 
where 1'/s is the viscosity of the solvent. In the limit 1'/ -+ 1'/., or A -+ A., the 
equation reduces to that of a Newtonian fluid. The same equation, with 
A = 0, follows from the theory of rubberlike elastic liquids with two major 
assumptions: The kinetics of the formation and breakup of "en­
tanglements" are assumed to be independent of the deformation process, 
and the motion of network junctions is affine relative to the continuum. 
(Equations with A = 0 are known as Oldroyd-Maxwell, or simply Maxwell, 
fluids.) 

Relaxation of the assumption of affine motion in the rubberlike network 
theory leads to values of the parameter a that are different from -1. 
The resulting equation, with A = 0, is often called the lohnson-Segalman 
model. It is common for those doing research on numerical methods to 
include the retardation-time (A) term in this equation and others of similar 
type in order to stabilize algorithms at high stress levels, and to refer to 
these as a "modified" Johnson-Segalman (or other) model. 

Real polymeric materials contain many modes of chain relaxation and. 
consequently a spectrum of relaxation times. This spectrum is readily 
accounted for by writing the stress as a sum of partial stresses, each of 
which is described by an equation like (1). The parameters {A;, 1'/;, A;} can 
be determined from linear viscoelastic measurements, such as small-strain 
forced oscillations. The relationship between constitutive equations of this 
elementary type and equations that attempt to take into account more 
details of molecular structure is discussed in several recent texts (Doi & 
Edwards 1986, Bird et al. 1987, Larson 1988). The phenomena that we 
discuss in this review in the context of fluids described by Equation (1) are 
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16 DENN 

observed in the other, more comprehensive theories, most of which reduce 
to Equation ( 1) in limiting cases. 

"SPURT" AND "SLIP" FLOW 

One of the most dramatic phenomena observed in the flow of polymeric 
liquids is an instability commonly known as melt fracture. The instability 
is most easily observed in extrusion through a long die. Below some 
critical throughput the surface of the extrudate is smooth. At the critical 
throughput the surface becomes distorted. The nature of the surface dis­
tortions is somewhat dependent on the polymer; the most complete set of 
phenomena is observed in linear polyethylene, as illustrated in Figure 1 
(Kalika & Denn 1987). At a first critical stress the extrudate surface shows 
a small-amplitude, high-frequency disturbance (Figure la); this is generally 
known as sharkskin. There is a second critical stress at which periodic 
pressure and flow-rate pulsations are observed and the extrudate surface 
alternately shows relatively smooth and sharkskin regions (Figure lb); this 
is known as stick-slip, or spurt, flow. The average stress remains constant 
in the stick-slip region. Finally, the oscillations disappear and the surface 
is characterized by a wavy, rough character (Figure Ie). The three regions 
are delineated on the flow curve (nominal wall shear rate versus shear 
stress) shown in Figure 2. Normal power-law behavior is observed at low 
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VISCOELASTIC FLUID MECHANICS 17 

Figure 1 Surface irregularities on an extrudate of linear low-density polyethylene: (a) 
sharkskin; (b) stic,k-slip; (c) wavy fracture, From Kalika & Denn (1987), with permission, 
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Figure 2 Flow curve for linear low-density polyethylene at 215°C. From Kalika & Denn 
(1987), with permission. 

stresses. There is a change in the slope of the flow curve at the onset of 
sharkskin (cf. Kurtz 1984, Ramamurthy 1986a). Reduction of the data in 
the stick-slip region for the sharkskin and smooth segments of the cycle 
shows that the flow rate is double valued, with the values for the two rates 
lying on the lower and upper branches shown in the figure. (The existence 
of two very different flow rates in a constant-throughput experiment is 
easily explained on the basis of typical melt p-p- T data; compressibility 
associated with the pressure fluctuations during the cycle is comparable to 
the volume contained in the die.) 

Early observations about melt fracture have been summarized by Petrie 
& Denn (1976). Sharkskin is frequently absent in experiments, and only 
linear polymers seem to exhibit a stick-slip region. In all cases the onset 
of melt fracture occurs at a critical value of the recoverable shear. The 
recoverable shear is defined as the ratio of the shear stress at the wall to a 
characteristic modulus; in the context of Equation (1), the modulus would 
be defined as G = 1'f(1-AjA.)/A.. The critical value is always in the range 
from unity to 10, with an apparent trend toward lower values as the 
polymer becomes more monodispersed. In the experiment shown in Figure 
I the modulus was estimated to be 6 x 104 Pa, in which case the first 
instability occurred at a recoverable shear of 4.5. It is generally observed 
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VISCOELASTIC FLUID MECHANICS 19 

that tapering the die entry reduces the severity of melt fracture but not the 
point of the onset. Most experiments indicate that increasing the length­
to-diameter ratio of the die reduces the severity. Recent birefringence 
experiments (Somberger et al. 1987) on linear polyethylene in short dies 
of different lengths indicate that the onset of sharkskin is die-length depen­
dent but always occurs with the same stress pattern at the die inlet. 

Experiments by Vinogradov et al. (1972) on a series of well-defined 
narrow-distribution polybutadienes and polyisoprenes (see Table 1) have 
received a considerable amount of recent attention by theorists, and these 
data are reproduced in Figure 3. (In comparing Figures 2 and 3, note that 
4Q/nR3 = 8V/D.) The onset of a spurt instability in each polymer occurs 
for all but the lowest molecular weights at approximately a constant stress. 

Wall Slip 
Wall slip has sometimes been cited as the cause of melt fracture (cf. the 
discussion in Petrie & Denn 1976), but workers in non-Newtonian fluid 
mechanics have almost universally accepted the "no-slip" boundary con-

Table 1 Partial characterization of polymers studied by Vinogradov et al. (1972). Molecular­
weight determination from intrinsic viscosity 

Molecular wcight Weight average/number average 
x 10-5 molecular weight 

Polybutadiene 

PB-l 0.38 1.22 
PB-2 0.68 1.20 
PB-3 1.02 1.10 
PB-4 1.51 1.10 
PB-5 2.Q4 1.10 
PB-6 2.4 1.10 
PB-7 3.2 I.lO 
PB-8 5.8 1.11 

Polyisoprene 

PI-l 1.06 2.03 
PI-2 1.48 1.61 
PH 2.82 1.14 
PI-4 3.55 1.14 
PI-5 3.80 1.l0 
PI-6 4.22 1.05 
PI-7 5.75 1.02 
PI-8 6.02 1.10 
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Figure 3 Flow curves of Vinogradov et al. (1972) for narrow-distribution polybutadienes 
(a) and polyisoprenes (b), Polymer characterization is given in Table 1. Reproduced with 
permission. 

dition in analyses of flow. 1 All attempts to predict the onset of flow 
instabilities in long channels for Oldroyd fluids using linear stability theory 
have failed when the no-slip condition has been employed (Ho & Denn 
1977/78, Lee & Finlayson 1986, Renardy & Renardy 1986, Lim & 
Schowalter 1987). Pearson & Petrie (1968) did note that shear flow can 
become unstable even for Newtonian fluids when a slip velocity that is a 
function of the wall stress is incorporated as a boundary condition. For 
most fluid models the instability occurs with zero wave number (infinite 
wavelength), although for the Oldroyd fluid there are conditions under 
which the most critical wavelength is finite, For inelastic power-law fluids 
the onset of the instability occurs at a value of unity for the group 
S = -Dn/21'fdVsfdrw; here, n is the power-law index (the slope of the flow 
curve in logarithmic coordinates), Vs is the slip velocity, and rw is the wall 
shear stress. 

Lim and Schowalter (Schowalter 1988) have recently used a flush­
mounted hot-film probe to detect the onset of slip in a polybutadiene with 
a molecular weight of l.5 x 105, which is comparable to Vinogradov et 

1 There is some tradition of questioning the no-slip boundary condition in Newtonian and 
non-Newtonian fluid mechanics, as reviewed in a recent paper by Schowalter (1988), 
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VISCOELASTIC FLUID MECHANICS 2 1  

al.'s ( 1972) PB-4 (see Table I). The measurement is indirect: They found 
good agreement between the measured and theoretical heat-transfer 
coefficients at low flow rates but a substantial departure from theory that 
appears to be explainable only in terms of wall slip beyond a critical rate. 
Vinogradov et al. (1972) reported a similar indirect observation based on 
the accumulation of electric charge on the extrudate surface. 

The traditional means of inferring wall slip is to carry out experiments 
in capillaries of different diameter and then to plot shear rate versus 
reciprocal diameter at constant wall stress; the apparent slip velocity can 
be computed from the slope. Ramamurthy's (1986a) data in different capil­
laries for the linear low-density polyethylene illustrated in Figures I and 
2 are shown in Figure 4. The nonzero slope is an indication of wall slip. 
The occurrence of a nonzero slip velocity corresponds to the onset of 
sharkskin and to the change in slope of the flow curve. One of the most 
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Figure 4 Wall-slip measurements for linear low-density polyethylene at 220°e. From 
Ramamurthy (l986a), with permission. 
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Figure 5 Normalized slip velocities for linear low-density polyethylene at 215°C. From 
Kalika & Denn (1987), with permission. 

intriguing aspects of Ramamurthy'S experiments is the observation that the 
onset of surface distortions is dependent on the materials of construction of 
the extrusion die. One of several examples cited by Ramamurthy (1985, 
1986a,b) notes that the onset of melt fracture can be delayed or eliminated 
in film extrusion by changing from a chrome-plated steel die to a die 
fabricated from alpha brass (a zinc/copper alloy with more than 20% 
zinc). The clear implications of these experiments are that the onset of the 
flow instability is associated with a failure of adhesion at the melt/metal 
interface, and that the nature or'the interface is a major factor in this 
phenomenon. 

Slip velocities derived from the data set shown in Figure 2 (using Rama­
murthy's observation that the change in slope in the flow curve is the result 
of slip) are plotted in Figure 5 (Kalika & Denn 1987). The data generally 
superimpose for different capillaries when the slip velocity is normalized 
with respect to the mean velocity. The discontinuity occurs at the onset of 
stick-slip flow, beyond which the slip velocity is about 90% of the mean 
velocity. The apparent slip velocity in the sharkskin region is roughly 
linear, suggesting a "Navier" boundary condition beyond a critical stress. 
The positive slope is inconsistent with the criterion for an instability due 
to wall slip in the theory of Pearson & Petrie (1968).2 

2Kalika & Denn (1987) used the incorrect sign for S and concluded that the onset of 
instability was in approximate agreement with the prediction of Pearson & Petrie (1968). 
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Constitutive Instabilities 

VISCOELASTIC FLUID MECHANICS 23 

The viscosity of the Oldroyd fluids is shear-rate dependent as long as 
a =F ± 1. The flow curve predicted for the Oldroyd fluid is shown sche­
matically in Figure 6; the curve is multivalued in the range 0 � AjA < 1(9 
for a i= ± 1. It appears to be intuitively obvious that a fully developed 
laminar flow will be unstable whenever the throughput is a decreasing 
function of the stress, and this was shown rigorously by Yerushalmi et at. 
( 1970; see also Kolkka et al. 1988). Huseby ( 1966) showed that Pao's 
(1962) molecular theory of polymer melts predicted a multivalued flow 
curve, and he conjectured that this could be the cause of the stick-slip 
region in melt fracture. The argument is a static one and does not address 
the dynamics of the flow. This notion has been reintroduced by McLeish 
& Ball ( 1986; see also McLeish 1987) in the context of the Doi-Edwards 
(1986) theory, which is a molecular theory of concentrated solutions and 
melts that is widely believed to capture many of the important physical 
processes at a molecular level. The Doi-Edwards theory predicts a 
maximum in the shear-stress curve but no subsequent minimum. McLeish 
& Ball argue that the theory does not account for the very fast relaxation 
modes, and they have added a "Rouse" relaxation mode to the Doi-

Q 
> 
co 

(d) A=O 

(e) O<Ad/9 

Stress 
Figure 6 Flow curves for an Oldroyd fluid [Equation (1), with b = b' = c = c' = OJ. 
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Figure 7 McLeish & Ball's (1986) prediction of the magnitude of the velocity spurt for 
Vinogradov et al.'s ( 1972) polybutadiene (D) and polyisoprene (6) data. Here 
R = O.3(M/Mel', where M is the molecular weight and Me is the "entanglement" molecular 
weight. The polyisoprene data were added to the published figure by Dr. McLeish. Repro­
duced with permission. 

Edwards equation to account for unhindered chain motions. The Rouse 
mode corresponds to Equation (I) with a = - I and A = 0, so it causes a 
second extremum in the flow curve, leading to a curve qualitatively like 
(c) in Figure 6.3 The molecular-weight dependence is explicitly included in 
their formulation, and they predict both the onset of spurt flow and the 
magnitude of the velocity change as a function of molecular weight. The 
latter results are shown in Figure 7 for Vinogradov et a1.'s (1972) data on 
both polymers. McLeish & Ball also predict hysteresis with a decreasing 
pressure gradient; this prediction has not been tested for these polymers, 
and it is relevant to a subsequent discussion of Vinogradov et a1.'s data. 

3 Lin (1985, 1987) has made similar observations regarding the multivalued nature of the 
Dui-Edwards theory. Lin's papers du not refer tu Huseby's work. 
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VISCOELASTIC FLUID MECHANICS 25 

It should be noted that Pearson et al. (1989) do not find a second extremum 
in the flow curve in their extension of the Doi-Edwards theory to includc 
short time scales. 

It is readily established that, to within terms of order AI A, the first 
extremum in the flow eurve in Figure 6 occurs at a recoverable shear of 
'wiG = 0.5(I-a2)-o.5. This corresponds to a critical recoverable shear of 
0.5 in the limit a � 0, while all values of a in the range -0.998 ::s; a ::s; 0 
correspond to critical recoverable shears of less than 10. Any constitutive 
theory of the general Oldroyd type with 0 2: a > - 1 thus guarantees the 
onset of an instability in the range observed experimentally, independent 
of any molecular mechanism. The second extremum, which is an essential 
component of a "constitutive" argument for stick-slip flow, requires that 
A be nonzero for a constitutive equation with a single relaxation mode, or 
that there be a wide spacing of relaxation times for a constitutive equation 
with multiple modes and A = O. 

Dynamics of Spurt Flow 
The combined momentum and stress equations for fluids with constitutive 
equations of the form of Equation (1), as well as some generalizations 
of more pragmatic interest, exhibit a Hadamard instability (sometimes 
referred to as loss of evolution) when the retardation time A is equal to 
zero. This phenomenon, in which disturbances of infinitesimal wavelength 
grow rapidly in amplitude, was first analyzed by Rutkevich (1969, 1970, 
1972) and has been studied in detail recently by Joseph et al. (1985), Joseph 
& Saut (1986), and Dupret & Marchal (1986). Loss of evolution implies a 
change of type of the basic equations, which is a point to which we return 
subsequently in a different context, but the converse is not true. Some 
workers argue that any constitutive equation that allows loss of evolution 
is physically inadmissable, whereas others argue that conditions necessary 
for loss of evolution may represent real physical phenomena. The pres­
ence of a nonzero retardation time in Equation (1) ensures evolutionary 
behavior. 

Malkus and coworkers (Kolkka et al. 1988, Malkus et al. 1989), building 
on an idea of Hunter & Slemrod (1983), have analyzed the dynamics of 
shear flows for fluids satisfying Equation (1) with b = c= O. They have 
demonstrated through phase-plane analysis and simulation that solutions 
exist beyond the first extremum in the flow curve where, following a 
"latency" period, there is an approach to a "spurt attractor" in which the 
velocity is characterized by a very large gradient near the wall; the stress 
is continuous across the channel for these solutions, but the velocity 
gradient is discontinuous, reflecting the multi valued nature of the flow 
curve. Malkus and coworkers note that such a solution would be difficult 
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26 DENN 

to distinguish experimentaIIy from true wall slip. They have fit the poly­
isoprene data of Vinogradov et al. ( 1972) with Equation ( 1), allowing the 
viscosity to depend on the 3.3 power of the molecular weight. They argue 
that the retardation-time term, which arises in a natural way only in dilute-' 
solution theories, can be interpreted as reflecting very rapidly responding 
modes in the melt; such modes are not accounted for in existing melt 
theories, as noted previously, and this approach is analogous to McLeish & 
Ball's addition of a Rouse relaxation mode to the Doi-Edwards equation. 
Malkus and coworkers are quite successful in predicting the onset of the 
spurt phenomenon in Vinogradov et al. 's polyisoprene experiments using 
data fit in the low-shear-rate region of the flow curve (see Figure 8). Their 
predictions for the hysteresis observed on unloading differ from those of 
McLeish & Ball (1986), which allows for an experimental discrimination 
at least between these two mechanisms. It is important to keep in mind, 
however, that the general structure of Equation ( 1) ensures that there will 
be a flow instability in the neighborhood of tre one observed experi­
mentally. The dynamical solutions obtained by Malkus and coworkers 
do not contain the persistent oscillations between the two branches of the 
flow curve that are observed experimentally in the stick-slip region. 

L;. PI-2 
x PI·3 
... PI·4 
• PI-7 
0 Coalescent Points 

0 
T 0 CI) 
� 

if.l -1 

0 
0 
� -2 2 

-3 
4 

4 5 6 7 

LOG TWall (dyne/cm2) 
Figure 8 Kolkka et al.'s (1988) prediction of the onset of spurt flow for Vinogradov et al.'s 

(1972) polyisoprene data. Reproduced with pennission. 
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The Paradox 
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The data indicating the existence of slip in viscoelastic liquids at high stress 
levels, and the identification of slip as the physical mechanism associated 
with the onset of flow instabilities, make a convincing argument for a 
major rethinking of the formulation of boundary conditions for visco­
elastic fluids. If this is indeed the correct physical mechanism, then the 
implications for the simulation of processing flows are substantial. Indeed, 
there are profound technological implications for the processing of poly­
meric melts. 

It is not difficult to construct a self-consistent scenario for the experi­
mental observations during stick-slip flow, provided that one accepts the 
postulate that there is a critical stress for adhesion of the polymeric liquid 
to the surface. The departure of the melt from the surface will be 
accompanied by rapid stretching, resulting in a high degree of orientation 
of the chains in the neighborhood of the wall. The orientational change 
causes a substantial change in free energy, in which the fluid will be more 
rubberlike; this state may be analogous to what Vinogradov et al. (1972) 
call the "high elastic state." The energetics of this highly oriented state are 
such that readsorption is unlikely; indeed, it is well known (but not well 
documented in the literature) that the adhesion of highly oriented chains 
is much poorer than that of chains in a random-coil state. [Some direct 
observations of apparent loss of adhesion in stretching flows of polymer 
solutions at high stress levels are reported by Ferguson et al. (1987) and 
Sridhar & Gupta (1988).] Reattachment can therefore occur only by the 
diffusion of chains from the bulk, which is an inherently slow process, or 
when the chains that have been torn from the surface have relaxed (also 
a slow process) or have left the die. This scenario would imply that the 
period for stick-slip flow should be of the order of a residence time in the 
die, which is indeed what is observed experimentally (Kalika & Denn 
1987). The problem with this scenario is that the onset of the flow instability 
correlates with the rheological properties of the bulk melt, and it is not at 
all clear that the bulk properties should be involved in any way for slip.4 

Mechanisms associated with the inherent constitutive instability are 
appealing, in that the predictions are independent of surface energetics. 
The best available data seem to demand that slip occur, however-hence 
the paradox. This issue thus remains a major one to be resolved. Further 
implications are discussed in subsequent sections. 

'While the rate of deadhesion should depend on bulk rheological properties, the initial 
critical stress would be expected to be related only to surface energies (see Barquins 1984). 

We should note, however, that D. Hill at Berkeley has shown in unpublished work that the 
adhesion approach of Barquins can lead to a dependence of the critical stress on the modulus 
of the bulk melt. Ideas developed by Hutton (1965) are also relevant. 
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28 DENN 

CHANGE OF TYPE 

Many viscoelastic constitutive equations exhibit an "instantaneous elastic" 
response. The notion of instantaneous elasticity follows directly from a 
transient network model of a polymeric liquid; it is inconsistent with the 
usual picture of a dilute solution, in which there is no contact between 
individual polymer chains. In the context of Equation (1), instantaneous 
elasticity requires that the retardation time A be zero. Fluids exhibiting 
instantaneous elasticity permit the propagation of shear waves at a finite 
velocity. 

Equations without a retardation time can change type and become 
hyperbolic within regions of a flow field. This point has received con­
side�able attention in recent years (Joseph et al. 1985, Joseph & Saut 1986, 
Renardy 1989). Change of type has frequently been identified as a possible 
cause of computational difficulties for viscoelastic liquids. Perhaps of more 
interest is the identification of a variety of flow anomalies with a change 
of type to a hyperbolic system. This appears to have been done first by 
Ultman & Denn (1970), who attempted to explain the heat-transfer data 
of James (1967), shown in Figure 9, for flow of a very dilute aqueous 
solution of poly(ethylene oxide) past cylinders having a sixfold range of 
diameters. The data deviate from the curves for water at the same linear 
velocity for all diameters. Ultman & Denn used a molecular theory for the 
parameters in Equation (1) (assuming A = 0) to estimate the velocity at 
which an Oseen approximation to the flow past cylinders changes type, 

10 

� d' /!, /!, /!, /!, /!, /!, /!, /!, � /!,/!,/!, 
Nu � �ooo 0 0 00 0 000 0 00 00000 
� ��O ODDDODOD
�
DDOD 

I � /!, R=3x 103;n 

0.01 0.10 
U, ftlsee 

o R= I x 10-3;n 
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- NEWTONIAN 
1.00 

Figure 9 Nusselt number (dimensionless heat-transfer coefficient) as a function of linear 
velocity for flow of 50-ppm aqueous poly(ethylene oxide) past cylinders. Data from James 

(1967). 
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VISCOELASTIC FLUID MECHANICS 29 

and they obtained good agreement with the experimentally observed ve­
locity. The criticism of this work, which is undoubtedly valid in the context 
of the theories being discussed here, is that A must be close to A for 
the polymer solutions studied by James, and thus a change of type is 
impossible. 

Joseph and coworkers (cf. Joseph & Chen 1988) have recently suggested 
that change of type in the flow field is responsible for a variety of other 
anomalies. Perhaps the most interesting is their observation (Joseph et al. 
1987) of "delayed die swell," illustrated in Figure 10. Extrudate swell of a 

Figure 10 Extrusion of 6% polyisobutylene in decalin through a 3. I 75-mm diameter capil­
lary (a) at the critical velocity, and (b) above the critical velocity, with delayed swell. From 
Joseph et al. (1987), with permission. 
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30 DENN 

low-Reynolds-number jet generally begins at the start of the free surface. 
Joseph has demonstrated that the onset of extrudate swell is delayed at 
extrusion rates exceeding a critical velocity, which he identifies with the 
shear-wave velocity. 

Joseph et al. (1986; sec also Riccius et al. 1987) have constructed a 
concentric-cylinder device for measuring shear-wave velocities. They 
report finite wave velocities in a large number of polymeric liquids, in­
cluding dilute polymer solutions; their measured value for the 50-ppm 
aqueous poly(ethylene oxide) used by James is 2.48 cm s-t, which is 
essentially the velocity at which the transition in the heat-transfer 
coefficient is observed. Lee & Fuller (1987) (see also Fuller's review in this 
volume) have reported observations of shear waves using flow birefrin­
gence, obtaining results that are in agreement with the mechanical 
measurements on the same liquids by Joseph and coworkers. The solutions 
measured by Lee & Fuller were sufficiently concentrated that the ratio of 
retardation to relaxation time might be substantially less than unity, in 
which case the diffusive front would be relatively sharp and could appear 
to be wavelike. There appears to be no way to reconcile the observations 
of Joseph and coworkers with the molecular picture leading to Equation 
(1), however. 

The issue of whether or not wave propagation and change of type is 
possible has implications with regard to the "spurt" and "slip" phenomena 
discussed previously, as well as to issues like numerical computation. The 
models for spurt flow based on the form of the constitutive equation are 
inconsistent with the existence of change of type. The anomalies that each 
approach is trying to rationalize have technological importance, and only 
one of the paths can be correct. 

CORNER SINGULARITIES 

Interest in the mechanics of viscoelastic flow past sharp corners has been 
stimulated by attempts at numerical solution of axisymmetric and plane 
flow through sudden contractions (see Boger 1987, Keunings 1989). This 
flow field has been selected for attention because it is the simplest non­
rectilinear flow that approximates in any way the flow fields encountered 
in polymer-processing practice. The difficulties encountered in obtaining 
convergent solutions for fluids described by Equation (1) and its gener­
alizations at large values of the Weissenberg number (a dimensional relax­
ation time) have been widely documented (for example, Keunings 1989) 
and have been the focus of biannual international workshops. Refereed 
versions of papers presented at the 1983, 1985, and 1987 workshops have 
appeared as special issues of the Journal of Non -Newtonian Fluid Mechanics 
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VISCOELASTIC FLUID MECHANICS 31 

(Vols. 16, 20, and 29, respectively). There is still no general agreement 
regarding the convergence problems, although most investigators believe 
that the major difficulty is associated with the resolution of very large 
stress gradients emanating from comer singularities. 

Knowledge of the behavior in the neighborhood of a comer would 
enable the construction of elements that incorporate the strength of the 
singularity. This problem is unsolved in general and remains one of the 
most pressing outstanding issues in viscoelastic fluid mechanics. Most of 
the attention has focused on fluids for which the retardation time is equal 
t() zero. It is easily shown for a = -I that the stream function cannot be 
expressed as a power in distance from the comer. Lipscomb et al. (1987) 
have shown that for a "second-order fluid," which is obtained by per­
turbing Equation (1) for small A. about a Newtonian fluid, the strength of 
the stress singularity is twice that of the Newtonian fluid; this leads in 
some cases to a nonintegrable stress. Their finite-element simulations for 
a Maxwell fluid (A = 0, a = -1, b = c = 0) are consistent with this order­
ing up to the element closest to the comer, and they conclude that even 
when the stress is integrable, it would exceed the known bond strength of 
the materials (hence requiring relaxation of the no-slip condition). The 
perturbation in A. is not valid in the immediate neighborhood of the comer, 
however, so conclusions are tenuous. Davies (1988) has obtained a com­
plete solution for the corotational derivative (a = 0) with A = 0, and he 
has developed .the methodology for other values of this parameter. The 
comer stresses for a = 0 are in fact bounded, but values of a close to zero 
are unlikely to be of physical significance. There is widespread speculation 
that the presence of the retardation time ensures that the stress singularity 
will be of the same order as that for a Newtonian fluid, but this has not 
been rigorously demonstrated. 

Improved experimental techniques during the past decade have enabled 
the identification of a recirculating vortex that emanates from the singu­
larity at the entrance to the downstream (smaller) channel over some range 
of throughputs (Lawler et al. 1986, Boger et al. 1986, Boger 1987). This 
recirculation is unsteady over a finite range of flow rates and interacts with 
the larger comer eddy in the upstream channel in a way that has not been 
completely defined. The origin of this flow and its dependence on details 
of the constitutive equation are not known; it is likely to provide a useful 
means of discrimination between constitutive theories once the nature of 
the comer singularity is understood. 

The presence of a large recirculating vortex in the upstream channel for 
many (but not all) polymeric liquids has led some authors to attempt to 
develop approximate overall solutions as a means of estimating entry 
pressure losses. The fact that the large vortices induce a flow that is 
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32 DENN 

substantially extensional in the contraction region has also motivated the 
inversion of the analysis to enable estimation of rheological properties in 
extension (the "extensional viscosity") by means of measured entry pres­
sure losses. The most successful attempt is that of Binding (1988; Binding 
& Walters 1988). Binding's analysis is based on an approximation of 
the kinematics and use of the proposition that power consumption is 
minimized. The variational principle seems plausible, but it has not been 
proved, and Astarita's (1977) demonstration that the Helmholtz principle 
is not valid for viscoelastic liquids is likely to be relevant here. Similar 
variational principles have been used without proof to describe the con­
figuration adopted by immiscible polymeric liquids in co current flow (e.g. 
Everage 1973, Karagiannis et al. 1988). This is an area in which major 
progress needs to be made. 

CONCLUDING REMARKS 

My goal has been to identify those areas of viscoelastic fluid mechanics in 
which there appear to be major intellectual issues that are not dependent 
on details of the stress constitutive equation. These are generic problems 
that require careful experimentation or major improvements in theoretical 
understanding. While computational issues have occasionally been rele­
vant to the discussion, I have in general avoided dealing with the issue of 
numerical simulation for' viscoelastic liquids. Indeed, it appears that a 
number of the questions raised herc need to be rcsolved before numerical 
simulations of polymer-processing operations can be carried out with 
confidence at the high stress levels typically observed in industrial practice. 
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